The automatic acquisition of knowledge about discourse connectives
نویسنده
چکیده
This thesis considers the automatic acquisition of knowledge about discourse connectives. It focuses in particular on their semantic properties, and on the relationships that hold between them. There is a considerable body of theoretical and empirical work on discourse connectives. For example, Knott (1996) motivates a taxonomy of discourse connectives based on relationships between them, such as HYPONYMY and EXCLUSIVE, which are defined in terms of substitution tests. Such work requires either great theoretical insight or manual analysis of large quantities of data. As a result, to date no manual classification of English discourse connectives has achieved complete coverage. For example, Knott gives relationships between only about 18% of pairs obtained from a list of 350 discourse connectives. This thesis explores the possibility of classifying discourse connectives automatically, based on their distributions in texts. This thesis demonstrates that state-of-the-art techniques in lexical acquisition can successfully be applied to acquiring information about discourse connectives. Central to this thesis is the hypothesis that distributional similarity correlates positively with semantic similarity. Support for this hypothesis has previously been found for word classes such as nouns and verbs (Miller and Charles, 1991; Resnik and Diab, 2000, for example), but there has been little exploration of the degree to which it also holds for discourse connectives. We investigate the hypothesis through a number of machine learning experiments. These experiments all use unsupervised learning techniques, in the sense that they do not require any manually annotated data, although they do make use of an automatic parser. First, we show that a range of semantic properties of discourse connectives, such as polarity and veridicality (whether or not the semantics of a connective involves some underlying negation, and whether the connective implies the truth of its arguments, respectively), can be acquired automatically with a high degree of accuracy. Second, we consider the tasks of predicting the similarity and substitutability of pairs of discourse connectives. To assist in this, we introduce a novel information theoretic function based on variance that, in combination with distributional similarity, is useful for learning such relationships. Third, we attempt to automatically construct taxonomies of discourse connectives capturing substitutability relationships. We introduce a probability model of taxonomies, and show that this can improve accuracy on learning substitutability relationships. Finally, we develop an algorithm for automatically constructing or extending such taxonomies which uses beam search to help find the optimal taxonomy.
منابع مشابه
MDL-based Acquisition of Substitutability Relationships between Discourse Connectives
Knowledge of which lexical items convey the same meaning in a given context is important for many Natural Language Processing tasks. This paper concerns the substitutability of discourse connectives in particular. This paper proposes a datadriven method based on a Minimum Description Length (MDL) criterion for automatically learning substitutability of connectives. The method is shown to outper...
متن کاملTranslating English Discourse Connectives into Arabic: a Corpus-based Analysis and an Evaluation Metric
Discourse connectives can often signal multiple discourse relations, depending on their context. The automatic identification of the Arabic translations of seven English discourse connectives shows how these connectives are differently translated depending on their actual senses. Automatic labelling of English source connectives can help a machine translation system to translate them more corre...
متن کاملMachine Translation of Labeled Discourse Connectives
This paper shows how the disambiguation of discourse connectives can improve their automatic translation, while preserving the overall performance of statistical MT as measured by BLEU. State-of-the-art automatic classifiers for rhetorical relations are used prior to MT to label discourse connectives that signal those relations. These labels are used for MT in two ways: (1) by augmenting factor...
متن کاملModelling the Interpretation of Discourse Connectives by Bayesian Pragmatics
We propose a framework to model human comprehension of discourse connectives. Following the Bayesian pragmatic paradigm, we advocate that discourse connectives are interpreted based on a simulation of the production process by the speaker, who, in turn, considers the ease of interpretation for the listener when choosing connectives. Evaluation against the sense annotation of the Penn Discourse ...
متن کاملAutomatic Disambiguation of French Discourse Connectives
Discourse connectives (e.g. however, because) are terms that can explicitly convey a discourse relation within a text. While discourse connectives have been shown to be an effective clue to automatically identify discourse relations, they are not always used to convey such relations, thus they should first be disambiguated between discourse-usage and non-discourse-usage. In this paper, we inves...
متن کامل